Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Saudi Pharm J ; 31(2): 228-244, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2238542

ABSTRACT

MERS-CoV belongs to the coronavirus group. Recent years have seen a rash of coronavirus epidemics. In June 2012, MERS-CoV was discovered in the Kingdom of Saudi Arabia, with 2,591 MERSA cases confirmed by lab tests by the end of August 2022 and 894 deaths at a case-fatality ratio (CFR) of 34.5% documented worldwide. Saudi Arabia reported the majority of these cases, with 2,184 cases and 813 deaths (CFR: 37.2%), necessitating a thorough understanding of the molecular machinery of MERS-CoV. To develop antiviral medicines, illustrative investigation of the protein in coronavirus subunits are required to increase our understanding of the subject. In this study, recombinant expression and purification of MERS-CoV (PLpro), a primary goal for the development of 22 new inhibitors, were completed using a high throughput screening methodology that employed fragment-based libraries in conjunction with structure-based virtual screening. Compounds 2, 7, and 20, showed significant biological activity. Moreover, a docking analysis revealed that the three compounds had favorable binding mood and binding free energy. Molecular dynamic simulation demonstrated the stability of compound 2 (2-((Benzimidazol-2-yl) thio)-1-arylethan-1-ones) the strongest inhibitory activity against the PLpro enzyme. In addition, disubstitutions at the meta and para locations are the only substitutions that may boost the inhibitory action against PLpro. Compound 2 was chosen as a MERS-CoV PLpro inhibitor after passing absorption, distribution, metabolism, and excretion studies; however, further investigations are required.

2.
J Mass Spectrom Adv Clin Lab ; 21: 31-41, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1401638

ABSTRACT

More than a year after the COVID-19 pandemic was declared, the need still exists for accurate, rapid, inexpensive and non-invasive diagnostic methods that yield high specificity and sensitivity towards the current and newly emerging SARS-CoV-2 strains. Compared to the nasopharyngeal swabs, several studies have established saliva as a more amenable specimen type for early detection of SARS-CoV-2. Considering the limitations and high demand for COVID-19 testing, we employed MALDI-ToF mass spectrometry in the analysis of 60 gargle samples from human donors and compared the resultant spectra against COVID-19 status. Several standards, including isolated human serum immunoglobulins, and controls, such as pre-COVID-19 saliva and heat inactivated SARS-CoV-2 virus, were simultaneously analyzed to provide a relative view of the saliva and viral proteome as they would appear in this workflow. Five potential biomarker peaks were established that demonstrated high concordance with COVID-19 positive individuals. Overall, the agreement of these results with RT-qPCR testing on nasopharyngeal swabs was ≥90% for the studied cohort, which consisted of young and largely asymptomatic student athletes. From a clinical standpoint, the results from this pilot study suggest that MALDI-ToF could be used to develop a relatively rapid and inexpensive COVID-19 assay.

SELECTION OF CITATIONS
SEARCH DETAIL